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||ABSTRACT

Background: Kidney forms the main controlling organ in sustaining homeostasis and, thus, is vulnerable to toxicity by
xenobiotics. Aims and Objective: To evaluate the possible protective effects of the citrus flavonoid, hesperidin (HES),
against diethylnitrosamine (DEN)-induced nephrotoxicity in rats. Materials and Methods: Rats received a single
intraperitoneal dose of DEN (200 mg/kg body weight). Two-weeks after DEN administration, rats received 0.5 g/L
phenobarbital in drinking water for 12 weeks. HES (50, 100, and 200 mg/kg body weight) were orally administered from
the first day of experiment. Result: DEN administration induced nephrotoxicity evidenced or DEN-induced nephrotoxicity
was evidenced by the histological alterations and significant increase in serum creatinine (P o 0.001), urea (P o 0.01), and
uric acid (P o 0.001) levels. DEN-intoxicated rats exhibited a significant (P o 0.001) increase in renal lipid peroxidation
levels and reduced glutathione content and activity of superoxide dismutase, glutathione peroxidase, and glutathione-S-
transferase. Concomitant supplementation with all the doses of HES markedly prevented DEN-induced biochemical and
histopathological alterations. Conclusion: The study findings provide evidence that HES could protect against DEN-induced
renal injury through abolishment of inflammation and oxidative stress and potentiation of the antioxidant defense system.
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||INTRODUCTION

Diethylnitrosamine (DEN), a potent hepatocarcinogen, is
produced from the metabolism of some drugs and found
in tobacco smoke, processed meats, soybean, cheese, and
wide variety of foods.[1] The cytochrome P450-dependent
monooxidase systems biotransforms DEN, as reported earlier.

The lethal effects of DEN are initiated by this metabolic
activation.[2] During metabolism, DEN induces oxidative stress,
resulting in cytotoxicity, mutagenicity, and carcinogenicity.[3,4]

Oxidative stress has been reported to play a key role in the
pathogenesis of drug-induced renal damage, and reactive
oxygen species (ROS) have been implicated in the mechanisms
that lead to tubular necrosis.[5] Hence, the use of antioxidants
could offer protective effects against drug-induced renal
damage.

A growing number of epidemiologic studies consistently
reveals a protective effect of polyphenol-rich foods against
many diseases.[6,7] The results of multiple studies conducted in
animal models[8–14] and in humans[6,7] have provided an
evidence about the therapeutic effects of polyphenols. Flavo-
noids are nonnutritive dietary polyphenolic components
widely distributed in plants[12] and possess a wide range of
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biological effects.[15] Hesperidin (HES), one of the most
important flavonoids, is the predominant flavonoid in citrus
fruits.[16] The peel and membranous parts of sweet orange and
lemon have the highest HES.[17] HES exhibits numerous
biological and pharmacological effects including antioxidant,
anti-inflammatory, antidiabetic, hepatoprotective, and anti-
carcinogenic properties.[10,13,14,18] To the best of our knowledge,
reports evaluating the protective effects of HES against DEN-
induced nephrotoxicity are scarce. Therefore, this study was
designed to demonstrate the efficacy of HES in the modulation of
oxidative stress, inflammation, and cell damage associated with
DEN-induced nephrotoxicity in rats.

||MATERIALS AND METHODS

Chemicals
Hesperidin (HES), diethylnitrosamine (DEN), phenobarbital
(PB), pyrogallol, thiobarbituric acid (TBA), glutathione (GSH),
and 5,50-dithiobis-(2-nitrobenzoic acid) (DTNB) were purchased
from Sigma (USA). All the other chemicals were of analytical
grade and obtained from standard commercial supplies.

Animals and Treatments
Thirty male Wistar rats, weighing 120–140 g, obtained from the
animal house of the National Research Centre (El-Giza, Egypt),
were included in this investigation. The animals were housed in
plastic well-aerated cages (six rats/cage) at normal atmospheric
temperature (25 ± 1°C) and normal 12-h light/dark cycle. Rats
were provided with free access to water and were supplied
daily with laboratory standard diet of known composition ad
libitum. All animal procedures were undertaken with the
approval of Institutional Animal Ethics Committee of Beni-Suef
University (Egypt). Rats were divided to five groups (N = 6) and
were subjected to the following treatments:

� Group 1 (control): Rats were injected with a single dose of
saline (0.9%) and orally administered the vehicle 1%
carboxymethylcellulose (CMC).

� Group 2 (DEN): Rats were given a single intraperitoneal injection
of DEN (200 mg/kg body weight) dissolved in saline[19] and
given 1% CMC by gavage daily throughout the experimental
period. Two weeks after DEN administration, rats received 0.5 g/
L phenobarbital in drinking water[19] for 12 weeks.

� Group 3 (DEN + 50 mg HES): DEN/PB-treated animals
received 50 mg/kg hesperidin dissolved in 1% CMC by
gavage daily throughout the experimental period.[10]

� Group 4 (DEN + 100 mg HES): DEN/PB-treated animals
received 100 mg/kg hesperidin by gavage daily throughout
the experimental period.[20]

� Group 5 (DEN + 200 mg HES): DEN/PB-treated animals
received 200 mg/kg hesperidin by gavage daily throughout
the experimental period.[20]

The doses of HES were balanced consistently as indicated by
any change in body weight to keep up the comparable dosage for

every kilogram of body weight over the entire period of study. By
the end of the experiment, animals were killed, and blood samples
were collected, left to coagulate, and centrifuged at 3000 rpm for
15 min to separate the serum. Kidney samples were immediately
excised and perfused with ice-cold saline. Frozen samples (10%
wt/vol) were homogenized in chilled saline, and the homogenates
were centrifuged at 3000 rpm for 10 min. The clear homogenates
were collected and used for subsequent assays.

Biochemical Assays
Determination of serum urea, creatinine and uric acid: Serum
urea, creatinine, and uric acid levels were assayed using reagent
kits purchased from Biosystems (Spain), following the methods
of Kaplan,[21] Young,[22] and Fossati et al.,[23] respectively.

Determination of serum tumor necrosis factor(TNF)-a: Serum
levels of TNF-a were determined by specific ELISA kits
purchased from R&D Systems (USA), according to the manu-
facturer’s instructions. The concentration of TNF-a was deter-
mined spectrophotometrically at 450 nm. Standard plot was
constructed by using standard cytokine, and the concentrations
for unknown samples were calculated from the standard plot.

Determination of oxidative stress and antioxidant system
parameters: Lipid peroxidation, assayed as malondialdehyde
(MDA), was determined in kidney homogenates according to
the method of Preuss et al.[24] Reduced glutathione (GSH) content
was assayed according to the method of Beutler et al.[25] Activities
of superoxide dismutase (SOD), glutathione peroxidase (GPx), and
glutathione-S-transferase (GST) were measured according to the
methods of Marklund and Marklund,[26] Matkovics et al.,[27] and
Mannervik and Gutenberg,[28] respectively.

Histopathological study
The kidney samples were flushed with cold saline and then fixed
in 10% buffered formalin for at least 24 h. The specimens were
then dehydrated in ascending series of ethanol, cleared in xylene,
and embedded in paraffin wax. Blocks were prepared, and 4-mm
thick sections were cut by a sledge microtome. The paraffin
embedded sections were deparaffinized, washed, and stained
with hematoxylin and eosin (H&E). The stained slides were
examined under light microscope.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism 5
software (GraphPad Software, San Diego, CA). Results were
expressed as mean ± standard error (SEM), and all the
statistical comparisons were made by means of the one-way
ANOVA test, followed by Tukey’s test post hoc analysis.
A P value o0.05 was considered significant.

||RESULTS

Data summarized in Table 1 show the effect of DEN and HES on
renal function markers. The administration of DEN produced
marked impairment of kidney function as demonstrated by the
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significant (P o 0.001) increase in serum urea, creatinine, and
uric acid levels. Oral administration of 50, 100, or 200 mg
HES significantly decreased the elevated levels of serum urea
(P o 0.001), creatinine (P o 0.05), and uric acid (P o 0.001)
when compared with the DEN control group.

Figure 1 provides the description of serum level of TNF-a in
different treatment groups. Treatment with DEN significantly
(P o 0.001) increased the serum levels of the proinflammatory
cytokine TNF-a. Coadministration of HES produced a significant
decrease in the serum levels of TNF-a when compared with the
DEN-administered rats.

Histopathological examination revealed normal histology of
kidney in the control group [Figure 2A]. Treatment with DEN
caused renal damage evident by the histological changes
including adenoma, dysplastic renal tubules with karyomegalic
nuclei, atrophy of glomerular tuft, inflammatory cells infiltra-
tion, protein cast in the lumen of renal tubules, and vacuolation
of renal tubules [Figure 2B,C]. On the other hand, treatment of
the DEN-administered rats with the 50 [Figure 2D], 100

[Figure 2E], or 200 mg [Figure 2F] dose of HES protected
against the DEN-induced histological alterations. The histo-
pathological alterations are summarized in Table 2.

Concerning renal lipid peroxidation, DEN-administered rats
exhibited significant (P o 0.001) elevation in the renal lipid
peroxidation marker MDA when compared with the control
group of rats [Figure 3]. Oral supplementation of the 50- and
100-mg doses of HES to the DEN-treated rats significantly (P o
0.001) decreased renal MDA content. More or less similar, the
higher dose of HES (200 mg) significantly (P o 0.001)
prevented the DEN-induced lipid peroxidation in the kidney
when compared with the DEN control rats. In addition, the 200
mg HES dose significantly decreased the renal lipid peroxida-
tion when compared with the control (P o 0.05) and the lower
HES dose (P o 0.01), as represented in Figure 3.

In contrast, GSH content of the DEN-administered rats
showed significant (P o 0.001) decrease when compared with
the corresponding control group. Oral supplementation with all
the three doses of HES significantly (P o 0.01) ameliorated
renal GSH content, as depicted in Figure 4. Similarly, the activity
of SOD showed a significant (P o 0.01) decline in the kidney of
DEN-intoxicated rats when compared with the control group.
The low and high doses of HES significantly (P o 0.001)
ameliorated the activity of renal SOD. However, nonsignificant
differences exist, and the 100 mg dose of HES produced a less
potent (P o 0.05) ameliorative effect on the SOD activity
[Figure 5].

The activity of GPx and GST in kidney of the DEN-
administered rats showed a significant (P o 0.001) decrease
when compared with the control group of rats, as represented
in Figures 6 and 7, respectively. The 50-mg HES dose
significantly improved the activity of GPx (P o 0.05) and GST
(Po 0.001) when compared with the DEN group. Both the 100-
and 200-mg doses of HES markedly (P o 0.001) alleviated the
activity of GPx and GST.

Figure 1: Serum TNF-a levels in control, DEN, and DEN rats treated
with hesperidin. Data are expressed as mean ± SEM. ***P o 0.001 vs.
control, and #P o 0.05 and ##P o 0.01 vs. DEN.

Table 1: Serum creatinine, urea, and uric acid levels in control, DEN,
and DEN rats treated with hesperidin.

Creatinine
(mg/dL)

Urea
(mg/dL)

Uric acid
(mg/dL)

Control 0.66±0.10 27.59±2.81 1.80±0.11

DEN 1.07±0.06*** 79.36±6.44*** 4.67±0.59***

DEN + 50 mg HES 0.77±0.04# 43.38±5.32### 2.32±0.28###

DEN + 100 mg HES 0.82±0.04# 39.05±1.96### 2.26±0.21###

DEN + 200 mg HES 0.81±0.02# 27.74±3.29### 2.29±0.14###

***P o 0.001 vs. control, and #P o 0.05 and ###P o 0.001 vs. DEN.
Data are expressed as mean±SEM.

Table 2: Histopathological lesions in kidney sections of control, DEN,
and DEN rats treated with hesperidin.

Histopathological
lesions

DEN DEN +

50 mg
HES

DEN +

100 mg
HES

DEN +

200 mg
HES

Adenoma +++ – – –

Karyomegalic nuclei ++ – – –

Atrophy of

glomerular tuft

++ – – –

Inflammatory cells

infiltration

++ – – –

Protein cast in the

lumen of renal

tubules

++ – + +

Vacuolation of

renal tubules

– – + –
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||DISCUSSION

This study showed that the administration of DEN induced
renal damage, as evidenced by the increased levels of serum
creatinine, urea, and uric acid. Serum creatinine level has been
reported to reveal glomerular function and its increase is an

indicator of renal failure.[29,30] These findings are in agreement
with the studies of Rezaie et al.[31] and Pashmforoosh et al.,[32]

who demonstrated increased serum creatinine and urea levels
in the DEN-administered rats. Renal injury induced by DEN was
further confirmed by the observed histological alterations,
including adenoma, dysplastic renal tubules with karyomegalic

Figure 3: Lipid peroxidation in kidneys of control, DEN, and DEN rats
treated with hesperidin. Data are expressed as mean ± SEM. *P o 0.05
and ***P o 0.001 vs. control, ###P o 0.001 vs. DEN, and $$P o 0.01 vs.
DEN + 50 mg HES. MDA, malondialdehyde.

Figure 2: Photomicrographs of H&E-stained kidney sections of control (A) showing normal histological structure; DEN (B and C) showing several
lesions including dysplastic renal tubules with karyomegalic nuclei, atrophy of glomerular tuft, and inflammatory cells infiltration; DEN + 50 mg HES
(D), DEN + 100 mg HES (E), and DEN + 200 mg HES (D) showing nearly normal renal tubules and renal corpuscles. (� 400).

Figure 4: Reduced glutathione (GSH) content in kidneys of control,
DEN, and DEN rats treated with hesperidin. Data are expressed as mean±
SEM. ***P o 0.001 vs. control and ##P o 0.01 vs. DEN.
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nuclei, atrophy of glomerular tuft, and inflammatory cells infilt-
ration. Concurrent administration of HES, in a dose-dependent
manner, significantly decreased the serum levels of creatinine,
urea, and uric acid and markedly prevented the DEN-induced
renal histological alterations. The nephroprotective effects
of HES in DEN-administered rats have not been previously
demonstrated. Recently, HES has been demonstrated to protect
rats against gentamicin-induced nephrotoxicity.[33]

The proinflammatory cytokine TNF-a showed a significant
increase in the serum of DEN-administered rats when com-
pared with the normal control group. The contribution of the
immune system to the drug-induced nephrotoxicity has been

well recognized.[34] Numerous studies demonstrated
that several nephrotoxicants could induce an inflammatory
response, leading to organ injury.[35] The toxicant-induced
generation of inflammatory mediators promotes migration and
infiltration of leukocytes and aggravates the primary injury
induced by the toxicant.[36] Alleviation of the altered serum
TNF-a following HES administration might be attributed to its
anti-inflammatory properties. We have previously reported the
potent anti-inflammatory effect of HES in diabetic[10] and
cyclophosphamide-intoxicated rats.[14]

DEN was suggested to induce generation of ROS and
eventually resulting in oxidative stress and cellular injury.[37]

ROS have the ability to cause oxidative damage in DNA,
proteins, and lipids.[38] The kidneys are susceptible to the
injury caused by ROS because of the plenty of long chain
polyunsaturated fatty acids found in the composition of renal
lipids.[39] In this study, DEN-induced rats exhibited a significant
increase in levels of MDA, indicating a serious damage to kidney
tissue. Nakae et al.[40] reported that DEN could intercalate with
the membrane lipids and form ROS, which increase lipid
peroxidation. Increased lipid peroxidation leads to the altera-
tion of the membrane functions through decreasing its fluidity
and changing the activity of its bounding enzymes and their
receptors.[41] Concurrent treatment with HES markedly ame-
liorated the elevated levels of MDA in a dose-dependent
manner. This observation could be attributed to the potent
free radical-scavenging activity of HES, which we have
confirmed previously.[10,14]

On the other hand, DEN-administered rats exhibited
significant decrease in renal GSH content when compared with
the control group. GSH, a potent antioxidant, protects the
cellular constituents against the damage induced by ROS[42]

through its ability to form S-conjugates with the products of
lipid peroxidation.[43] Hence, GSH depletion leads to lowered

Figure 5: Superoxide dismutase (SOD) activity in kidneys of control,
DEN, and DEN rats treated with hesperidin. Data are expressed as mean±
SEM. **P o 0.01 vs. control, and #P o 0.05 and ###P o 0.001 vs. DEN.

Figure 6: Glutathione peroxidase (GPx) activity in kidneys of control,
DEN, and DEN rats treated with hesperidin. Data are expressed as mean±
SEM. ***P o 0.001 vs. control, and #P o 0.05 and ###P o 0.001 vs. DEN.

Figure 7: Glutathione-S-transferase (GST) activity in kidneys of
control, DEN, and DEN rats treated with hesperidin. Data are expressed
as mean ± SEM. ***P o 0.001 vs. control and ###P o 0.001 vs. DEN.
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cellular defenses against free radical-induced cellular injury.[44]

More or less similar, reduction in activity of the antioxidant
enzymes SOD, GPx, and GST was observed in the kidneys of the
DEN-administered rats. SOD and GPx play a significant role in
maintaining the body’s defense mechanism against the deleter-
ious effects of ROS,[45–47] and GST is an extra key detoxifying
enzyme.[48] The recorded reduction in GSH and the enzymatic
antioxidants may be attributed directly to the excessive
production of ROS in the DEN-induced rats. Oral administration
of all HES doses markedly alleviated renal GSH content and the
activity of the antioxidant enzymes. Therefore, we assume that
the nephroprotective mechanism of HES against the DEN-
induced oxidative stress is partially mediated by preventing
GSH decline and potentiation of the enzymatic antioxidant
defenses. These findings provide evidence on the radical
scavenging and antioxidant activity of HES documented in our
previous studies.[10,14]

||CONCLUSION

Data of the current study indicate that HES, in a dose-dependent
manner, exerts protection against the DEN-induced renal
toxicity in albino rats. Their renoprotective effects could be
attributed to attenuation of the proinflammatory cytokine
production and inhibition of the lipid peroxidative system
through prevention of GSH depletion and enhancement of the
enzymatic antioxidants.
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